

3M Advanced Materials Division

Making products lighter. Stronger. Smarter. Better.

April 12, 2016

American Coatings Conference 2016

Evaluation of 3M[™] Glass Bubbles for Solar Heat Reflection in Waterborne Acrylic Elastomeric Roof Coatings

Kevin Rink, Senior Technical Service ChemistAndrea Charif, Applications Development Engineer3M (St. Paul, MN)

Outline

- 1. Introduction
- 2. Definitions
- 3. Characteristics of Elastomeric Roof Coatings
- 4. Materials
- 5. Formulation & Sample Preparation

6. Testing & Results

- Basic Paint
- PVC Study
- Glass Bubbles compared to commercial microsphere blend as post addition to commercial paint
- Energy Calculator
- 7. Summary

Introduction

- 1. Increase in construction builds = increased energy demand = **higher cooling costs** in warmer climates
- 2. Heat reflective roof coatings (typically white/lighter colors) are one option used to combat these costs due to their high solar reflectance and emittance values in the thermal infrared region.
- 3. Solar radiation spectrum divided into 3 bands:
 - UV: 200–400 nm \rightarrow 5% of sunlight energy
 - Visible: $400-700 \text{ nm} \rightarrow 46\%$ of sunlight energy
 - Near Infrared: 700–2500 nm → 49% of sunlight energy felt as heat

Accounts for 96% of radiation in sunlight

Definitions

Solar Reflectance

Index (SRI)

A combined value of

Reflectance and Emittance.*

Elastomeric Roof Coatings: Typical Characteristics

- Adhesion (Dry & Wet) to many construction substrates including polyurethane foams, metal(s), concrete, etc.
- Elasticity
- Low temperature flexibility & excellent elongation
- Water resistance
- Low toxicity and easy clean-up
- Solar reflectance
- UV resistance
- DPUR (dirt pick-up resistance)

These will be evaluated in addition to thermal effects as related to the inside temperature.

3M[™] Glass Bubbles

Hollow Glass Microspheres

High-strength, low-density additives made from water resistant soda-lime-borosilicate glass.

3M [™] Glass Bubbles						
Appearance	White Powder					
Crush Strength , psi (90% survival)	250–28,000					
True Density g/cc	0.15–0.6					
Median Particle Size microns	16–65					
Effective Top Particle Size, microns 27–120						

Materials

Product	Target Crush Strength, psi	True Density	Particle Size Distribution (microns by volume)			
	(90% survival)	(9,00)	10%	50%	90%	
Calcium Carbonate (CaCO ₃)	Hardness: 3–4 mohs	2.72	-	Average = 12 microns	-	
Glass Bubble 3 (GB3)	16,000	0.46	12	20	30	
Glass Bubble 1 (GB1)	250	0.125	30	65	115	
Commercial Microsphere Blend (CMB) (solid particles)	7,000 (>98%)	0.73	-	Average = 100 microns	-	
Glass Bubble 2 (GB2)	400	0.22	20	35	65	
Commercial W/B Elastomeric Paint	N/A	N/A	N/A	N/A	N/A	

Formulations		CaCO ₃ (control)	GB3	GB1	СМВ	GB2
Material	WPG	Amount (gal)	Amount (gal)	Amount (gal)	Amount (gal)	Amount (gal)
Water	8.34	18.23	18.23	18.23	18.23	18.23
Dispersant	10.00	0.50	0.50	0.50	0.50	0.50
Potassium Tripolyphosphate	21.15	0.07	0.07	0.07	0.07	0.07
Cellulosic Thickener	11.61	0.30	0.30	0.30	0.30	0.30
Defoamer	7.10	0.28	0.28	0.28	0.28	0.28
Microbicide	8.33	0.18	0.18	0.18	0.18	0.18
Wetting Agent	8.97	0.22	0.22	0.22	0.22	0.22
Titanium Dioxide	32.33	2.32	2.32	2.32	2.32	2.32
Zinc Oxide	46.82	0.96	0.96	0.96	0.96	0.96
Calcium Carbonate	22.70	18.72	0	0	0	0
100% Acrylic Elastomeric Binder	8.70	54.60	54.60	54.60	54.60	54.60
Defoamer	7.10	0.21	0.21	0.21	0.21	0.21
Coalescent (e.g. Texanol [™])	7.91	0.76	0.76	0.76	0.76	0.76
Mildewcide	8.60	0.28	0.28	0.28	0.28	0.28
Ammonia (28%)	7.69	0.13	0.13	0.13	0.13	0.13
GB3	3.84	0	18.72	0	0	0
GB1	1.04	0	0	18.72	0	0
Commercial Microsphere Blend	6.1	0	0	0	18.72	0
GB2	1.84	0	0	0	0	18.72
Propylene Glycol	8.66	1.62	1.62	1.62	1.62	1.62
Water	8.34	0.61	0.61	0.61	0.61	0.61
TOTALS		99.99	99.99	99.99	99.99	99.99

Formulations

(continued)

- Adjust viscosity with HASE (Hydrophobically-modified Alkali Swellable Emulsion) or appropriate thickener to 100-125 KUs
- PVC = 42 (details on following slide)
- NV (vol) = 52
- VOC = <50 grams/liter
- Glass bubbles added towards end to minimize breakage
- Commercial paint used as purchased

Formulation

42 PVC Paint

Raw Material	V% Wet	V% Dry
TiO ₂	2.3	5.3
GB, CaCO ₃ or CMB	18.7	35.3
Acrylic Binder	54.6	56.7
Other Ingredients	24.4	2.7

Sample Preparation

- Application: Used drawdown bars and/or cast film(s) on black/white Leneta charts & 3003 H14 aluminum.
- 2. Cure: Air dry minimum 72 hours before testing. QUV samples aged minimum of 1 week before testing.

Scanning Electron Microscopy (SEM) of finished paint surface: 500X

Images display surface topography of dried film

bubble

Test Methods

Property	Test Method
Opacity	ASTM D2805
Reflectance	ASTM E1347, ColorFlex [®] EZ Instrument
Gloss	ASTM D523
Dry Film Thickness	PosiTector [®] 6000
Solar Reflectance	ASTM E903/G173
Solar Reflectance Index	Computer model based on ASTM E1980
Thermal Emittance	ASTM C1371 (Total Hemispherical at ambient temp 72–78°F)
Infrared Lamp Test	3M Test Method
QUV Weathering	1000 hours, Proprietary Method (Reference G154)
DPUR	<u>D</u> irt <u>P</u> ick- <u>Up</u> <u>R</u> esistance (24 hours/0–70 micron Arizona test dust)

Basic Paint Results

General Test Results: 15–20 mil films

Filler	Opacity	Reflectance Value Y	60° gloss
GB3	99.5	95.6	5
GB1	99.2	94.9	4.4
GB2	100.0	94.8	4
CaCO ₃	99.5	92.7	4.5
Commercial Paint	100.3	89.1	3.1
Commercial Microsphere Blend	100.6	87.7	3.5

Similar gloss and opacities, but Glass Bubbles yield brighter/whiter appearance.

Solar Reflectance

Perkin Elmer Lambda[™] 950 Spectrometer – Near IR attachment (scan 250–2500 nm)

Solar Reflectance: Aluminum

In general, Glass Bubbles offer very good overall Total Solar Reflectance (TSR).

Solar Reflectance: White Paper

Solar Reflectance: Black Paper

Total Solar Reflectance

Trend is similar on all substrates: Glass Bubbles offer excellent overall TSR. GB3 (smallest tested) exhibited best solar reflectance at all wavelengths.

Reflectance on aluminum

Thermal Emittance

Portable unit, total hemispherical emittance

Black chip calibrated: 0.88 **Stainless steel chip calibrated:** 0.05

Emissivity Results

No appreciable differences in emissivity: all samples >90% on aluminum

Solar Reflectance Index (SRI)

Combined calculated value using solar reflectance and emittance (can be >100). **Higher value indicates higher overall reflectance.**

Sample	Thermal Emittance	Total Solar Reflectance	Solar Reflectance Index (SRI)*	Calculated Roof Surface Temp. (°C)
CaCO ₃	0.93	0.856	108	41.4
GB3	0.92	0.887	113	39.8
GB1	0.92	0.887	113	39.8
Commercial Microsphere Blend	0.93	0.811	102	43.8
GB2	0.91	0.873	111	40.6
Commercial Paint	0.93	0.823	104	43.2

*Tool coded by Ronnen Levinson, Heat Island Group, Lawrence Berkeley National Laboratory (<u>http://HeatIsland.LBL.gov</u>) For assistance, contact Hashem <u>Akbari@H_Akbari@LBL.gov</u>, or Ronnen Levinson at <u>RMLLevinson@LBL.gov</u>

Infrared Lamp Test

Demonstrate effect of filler in coating on inside temperature of buildings

- IR lamp: Incandescent heat Lamp Light Bulb/ 250W/R40 reflector/120V
- Red triangle bulbs-T20931250R40/red
- Sample Size: Approx. 6 x 5 cm. (aluminum chip)
- Thermocouple: Omega Engineering Type K with MicroDAQ EL-USB-TC logger
- Chip placed on ceramic plate- thermocouple attached to back side of aluminum through hole
- Distance to target: Approx. 10 cm.

Infrared Lamp Test Results

Infrared Lamp Test Results

GBs could yield cooler inside temp as simulation shows on back side of aluminum panel.

Sample	Overall Avg. Temperature (°F)	Avg. After 40 min.	Δ (°F) from CaCO ₃
CaCO ₃	154.4	167.9	Reference
GB3	145.6	158.3	9.6
GB1	149.6	161	6.9
Commercial Microsphere Blend	155.6	168.3	0.4
GB2	150.5	161.3	6.6
Commercial Paint	161.9	175.9	8.0

3M

PVC Study with Glass Bubble 3

Solar Reflectance: Aluminum

SRI: <u>Solar Reflectance Index</u>

No significant differences in calculated SRI even at lower loading of GB3.

Sample	V% wet	V% Dry	Paint PVC	Thermal Emittance	Total Solar Reflectance	Solar Reflectance Index (SRI)
GB3	9.3	20	28	0.93	0.879	112
GB3	18.7	35	42	0.93	0.887	113
GB3	29.4	50	55	0.92	0.883	112

Infrared Lamp Test Results

Higher GB3 loading levels yield lower temperatures at equilibrium.

Accelerated Weathering: 1000 Hours QUV

3 mil dry film thickness

Glass bubbles exhibited good gloss retention, and comparable color retention and DPUR.

Sample	% 60° Gloss Loss	Total Color Change (DE)	DPUR (% Reflectance Recovery After QUV and 24 Hour Dry Dirt Test)
CaCO ₃	38	0.4	96.2
GB3	0	0.27	97.0
GB1	0	0.45	94.5
Commercial Microsphere Blend	4	0.42	96.2
GB2	0	0.37	95.2
Commercial Paint	19	1.57	95.5

Glass Bubble 3 vs. Commercial Microsphere Blend

Total Solar Reflectance

GB3 vs. Commercial Microsphere Blend

Post Addition of GB3 to commercial paint also increased total solar reflectance.

IR Lamp Test

Comparing GB3 vs Commercial Microsphere Blend

Post addition of glass bubbles could yield cooler inside temp as simulation shows on back side of aluminum panel.

IR Lamp Test-Thermal Insulative Comparison Commercial Paint with Post-additions

Energy Cost Calculators: \$\$

One example: <u>http://web.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm</u>

Input in = Input out

42 PV(Acrylic Fo C with 18.79	rmulation % Volume Loadin	g	TSR	Emittance	Energy Cos (\$/kwH)	t *	Savings Over Black Roof (\$/ft ² /year)	
	CaCO ₃			35.6	93	0.2		0.407	
	GI	B3	8	38.7	92	0.2		0.421	
	G	B1	3	38.7	92	0.2		0.421	
Comm	ercial Mie	crosphere Bler	nd 8	31.1	93	0.2		0.384	
	G	B2	3	37.3	91	0.2		0.412	
	Commer	cial Paint	8	32.3	93	0.2		0.391	
*R value	Place	Air Conditioner Efficiency	Heat	Heat C (\$/kw	ost Heat H) Efficiency	y		Many factors affect overall	can
10	Miami, FL	2	Electric	0.2	0.7			savings calcu	lations

Summary

Smaller glass bubbles (GB3) may offer other benefits such as performance in darker colors and TSR after extended outdoor exposure.

Property	Benefits of 3M [™] Glass Bubbles	Further optimization work is recommended
Total Solar Reflectance		to quantify other
Total Emissivity		benefits in darker
Insulative Properties/Lower Inside Temperature		colors & TSR after outdoor exposure.
Energy Savings	\checkmark	
*Weatherability/DPUR		

Acknowledgements

Andrea Charif, Applications Development Engineer (3M St. Paul)
Jean-Marie Ruckebusch, Senior Technical Service Specialist (3M France)
Connie Forehand, Laboratory Technician (3M St. Paul)
Andy Peterson, Laboratory Technician (3M St. Paul)
Terri Shefelbine, Senior Product Development Chemist (3M St. Paul)

Warranty, Limited Remedy, and Disclaimer: Many factors beyond 3M's control and uniquely within user's knowledge and control can affect the use and performance of a 3M product in a particular application. User is solely responsible for evaluating the 3M product and determining whether it is fit for a particular purpose and suitable for user's method of application. User is solely responsible for evaluating third party intellectual property rights and for ensuring that user's use of 3M product does not violate any third party intellectual property rights. Unless a different warranty is specifically stated in the applicable product literature or packaging insert, 3M warrants that each 3M product meets the applicable 3M product specification at the time 3M ships the product. 3M MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY IMPLIED WARRANTY OF NON-INFRINGEMENT OR ANY IMPLIED WARRANTY OR CONDITION ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. If the 3M product does not conform to this warranty, then the sole and exclusive remedy is, at 3M's option, replacement of the 3M product or refund of the purchase price.

Limitation of Liability: Except where prohibited by law, 3M will not be liable for any loss or damages arising from the 3M product, whether direct, indirect, special, incidental or consequential, regardless of the legal theory asserted, including warranty, contract, negligence or strict liability.

Technical Information: Technical information, recommendations, and other statements contained in this document or provided by 3M personnel are based on tests or experience that 3M believes are reliable, but the accuracy or completeness of such information is not guaranteed. Such information is intended for persons with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information. No license under any 3M or third party intellectual property rights is granted or implied with this information.

Perkin Elmer Lambda[™]950 Spectrometer is a trademark of PerkinElmer Inc. ColorFlex[®] EZ Instrument is a registered trademark of Hunter Associates Laboratory, Inc. PosiTector[®] 6000 is a registered trademark of DeFelsko Corporation

Thank you! Questions?

For further information, contact Kevin Rink: **Phone:** 651-737-1254 **Email:** kjrink@mmm.com