Polymer Composites with Hollow Glass Microspheres: Processing, Properties and Applications

Baris Yalcin, PhD Product and Application Development Engineer

> 3M Company Advanced Materials Division

> > November 6, 2012

Outline

Overview of 3M[™] Glass Bubbles

- Physical Properties of Hollow Glass Microspheres (HGM)
- Composition, Strength, Density and Particle Size

Formulating with Hollow Glass Microspheres

Polymer Processing with Hollow Glass Microspheres

- Compounding, Extrusion
- Injection Molding

Benefits of Hollow Glass Microspheres

- Material
- Processing

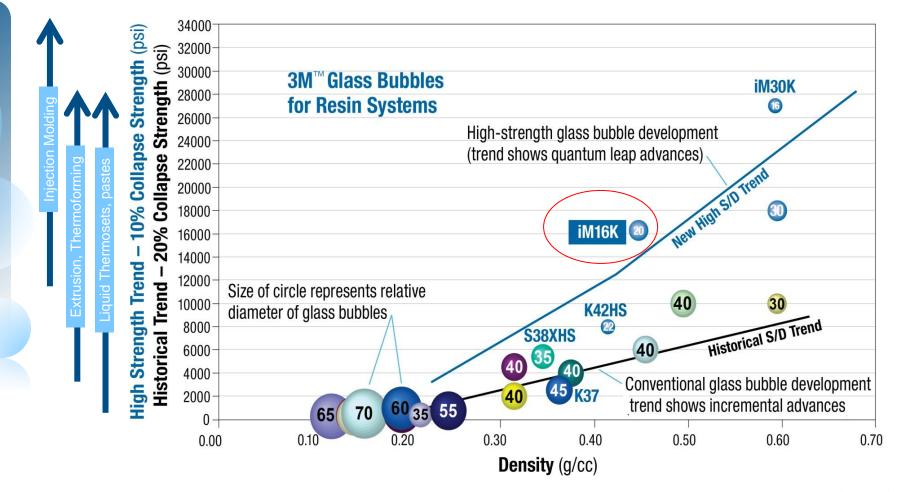
Application Examples

Industrial Business Group

3M[™] Glass Bubbles Overview

3M[™] Glass Bubbles

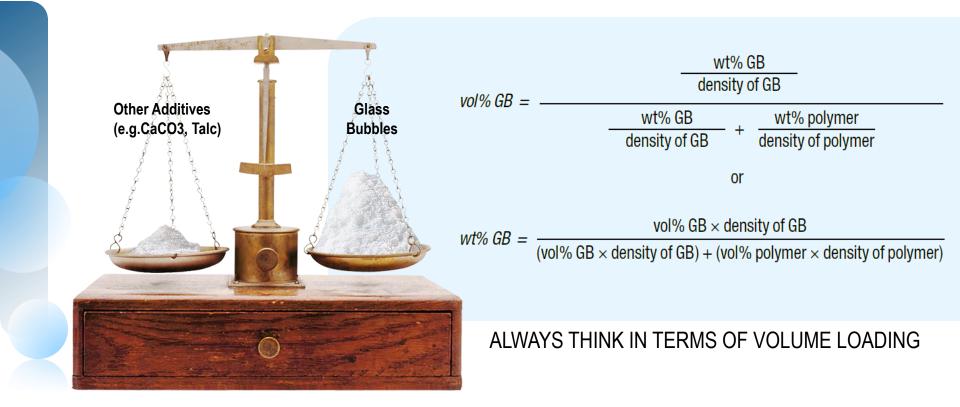
Property	Value
Shape	Hollow, thin walled, unicellular spheres
Composition	Soda-lime borosilicate glass
Color	White
True Density [†]	0.12 - 0.60 g/cc
Crush Strength*	250 – 28,000 psi
Hardness	Mohs scale 5
Softening Temp	600° C
Size	15 - 65 microns <


•ASTM D 3102-78 Standard Practice for the Determination of Isostatic Collapse Strength of Hollow Glass Microspheres (withdrawn in May 1984)

[†]Helium Gas Pycnometer

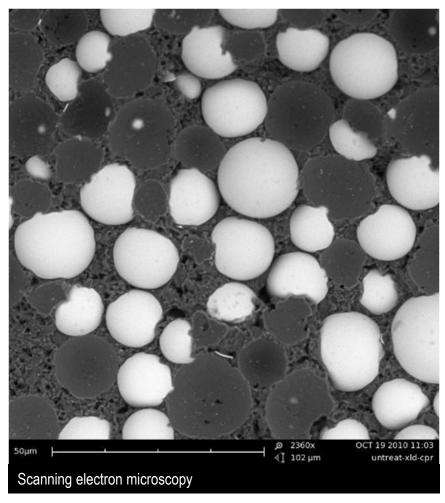
Wall thickness

3M[™] Glass Bubbles Isostatic Collapse Strength



Industrial Business Group

Formulating with HOIOW Glass Microspheres

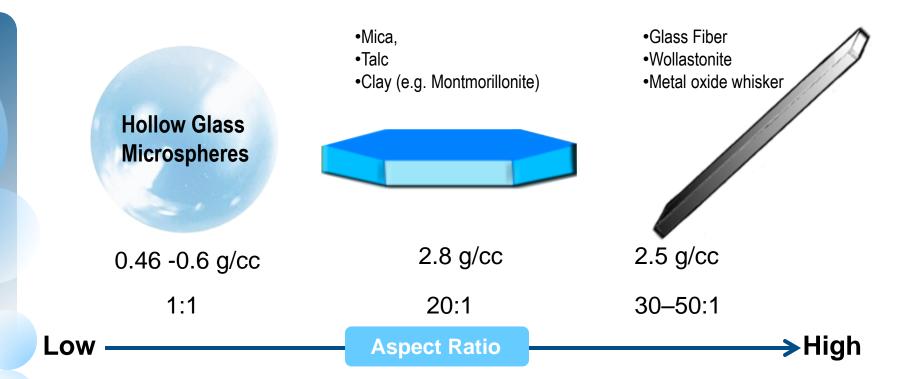


Formulating with GBs on Volume Basis

Maximum practical GB loading

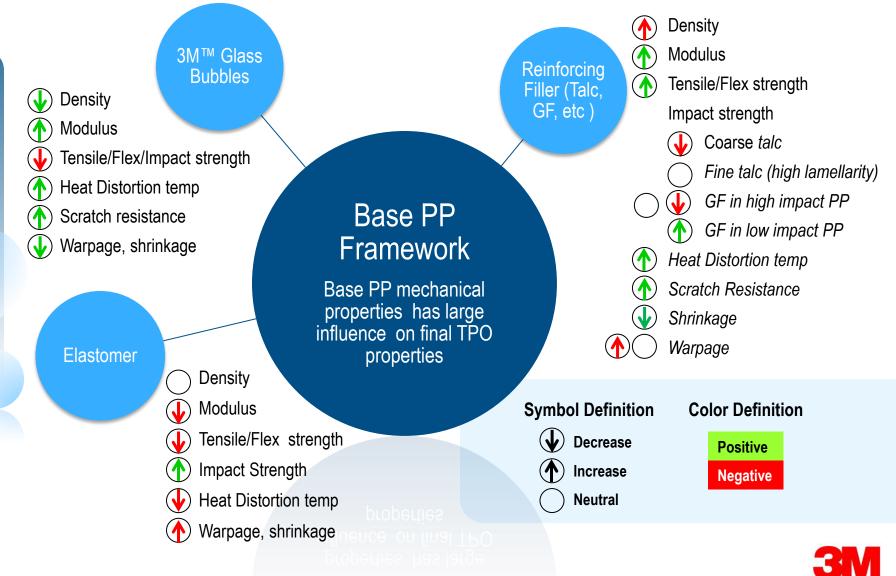
Component	Density	Weight	Volume	
	g/cc	%	%	
PP	0.9000	64.000	54.237	
GB	0.6000	36.00	45.76	
_	0.7627 Domoitu	100.000	100.000	
Totals Component	Density	Weight	Volume	
Component	Density g/cc	Weight %	Volume %	
_	Density	Weight	Volume	

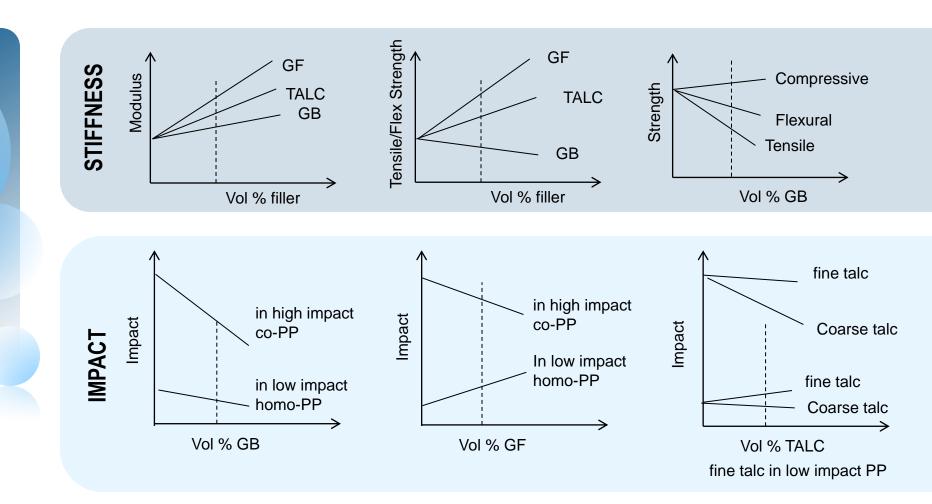
Component	Density g/cc	Weight %	Volume %
PVC	1.4000	74.000	54.950
GB	0.6000	26.00	45.05
Totals	1.0396	100.000	100.000
Component	Density	Weight %	Volume %
	q/cc	/0	/0
PVC	g/cc 1.4000	78.500	7 0 54.539
PVC GB			



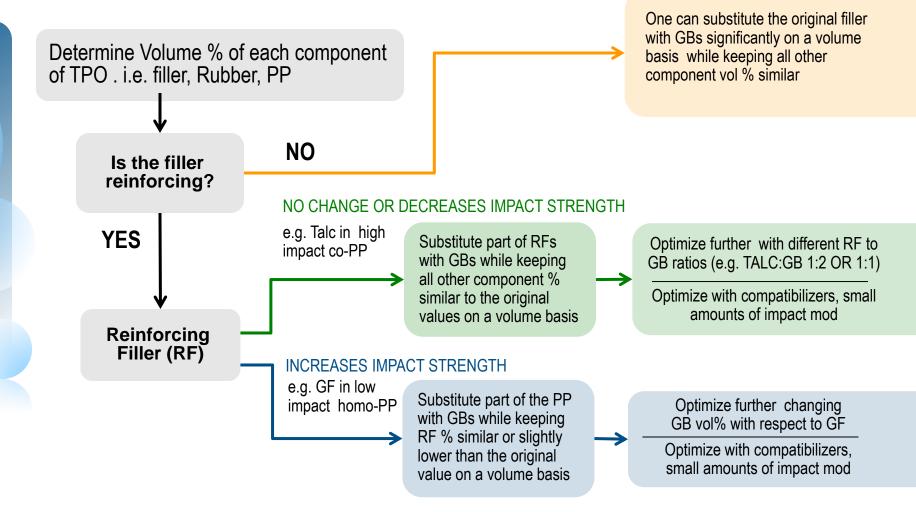
Formulating with GBs- TPOs

		Function
Polymer Phase	PP (Polypropylene) homo, co, high crystallinity) PE (polyethylene)	Main Matrix
Elastomer Phase	EPR (Ethylene propylene rubber) EPDM (EP-diene rubber) EO (ethylene-octene), EB (ethylene-butadiene) SEBS (Styrene-ethylene-butadiene-styrene)	Improve cold temperature impact properties
Reinforcing Filler Phase	Talc, Nano Clay, Mica Glass fiber (Short, Long), wollastonite, whiskers, ceramic fibers	Increase stiffness (strength, modulus), HDT
Additives	Pigments, Stabilizers	UV, Heat, etc


Comparison of 3M[™] Glass Bubbles to typical fillers used in TPOS

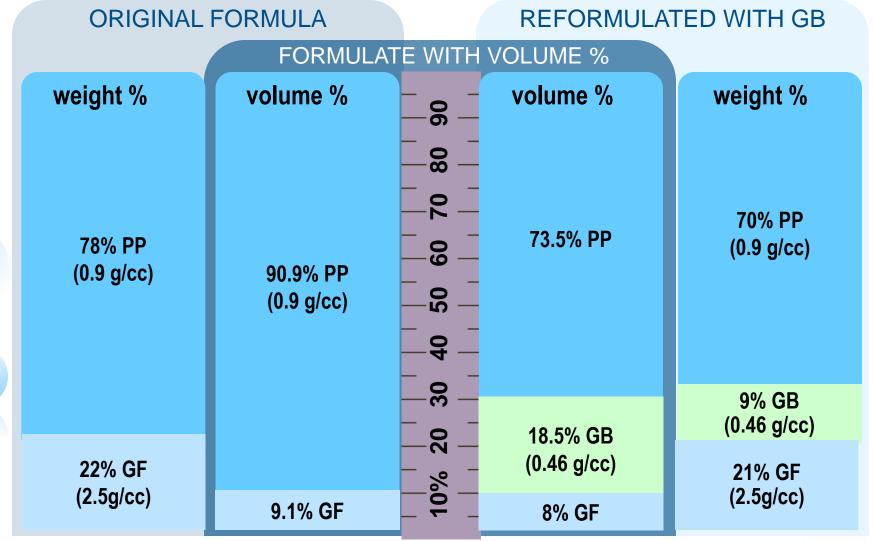

Due to the differences in density, size and aspect ratio, glass bubble containing recipes need to be carefully formulated to maintain a good balance of mechanical properties while reducing density

Effect of Major Components on TPO Properties



Extent of Individual Contribution of Fillers to Stiffness and Impact

Glass Bubble Formulation Strategy in the Presence of Other Fillers



Formulation Scheme in the Presence of Talc

ORIGINAL	FORMULA		REFORMULATED WITH GB		
	FORMULA	TE WITH	VOLUME %		
weight %	volume %	0	volume %	weight %	
60% PP (0.9 g/cc)	70% PP	40 50 60 70 80	70% PP	68.5% PP (0.9 g/cc)	
20% RUBBER (0.87 g/cc)		 30		22% RUBBER	
20% TALC	23% RUBBER	0% 20 - -	23% RUBBER	(0.87 g/cc)	
(2.78 g/cc)	7% TALC	- 7 -	5% GB 2% TALC	7% TALC (2.78 g/cc) 2.5% GB (0.46 g/cc)	

Formulation Scheme in the Presence of GF in a Low Impact PP

Industrial Business Group

Technical Data HOIIOW Glass Microspheres

Industrial Business Group

Component	Form	nula 1	Form	Formula 2		Formula 3		ula 4	Formula 5	
	Р	P	PP-GB10		PP-GB10-mapp		PP-GB20		PP-GB20-mapp	
	Wt%	Vol%	Wt%	Vol%	Wt%	Vol%	Wt%	Vol%	Wt%	Vol%
PP homopolymer	100	100	90	83	87	80.60	81	69	76	65.84
GB-iM16K			10	17	10	16.65	19	31	20	30.78
Mapp compatibilizer					3	2.75			4	3.38
Final	100	100	100	100	100	100	100	100	100	100
Density	0	.9	0.835		0.835		0.785		0.785	
Tensile Strength @ RT (Mpa)	30).2	22.3		29.8		16.2		31.0	
Tensile Strength @ 90°C(Mpa)	1().1	8.6		11.6		7.7		13.5	
Tensile Modulus @RT (Mpa)	11	95	1670		1513		1974		1830	
Tensile Modulus @ 90°C (Mpa)	1	62	230		230		340		300	
Flexural Strength (Mpa)	37.9		36	6.6	44.3		32.5		49.2	
Flexural Modulus @1 % secant (Mpa)	10	63.	1410		1486		1585		1740	
Izod impact Strength at RT (J/m)	38	3.5	24	1.2	34	l.8	20	.9	30.3	

Impact Strength in Unfilled PP Copolymer

ASTM D256 Izod Pendulum impact strength –Test Method A- Notched (kj/m ²)	As Received Unfilled	Part with IM16K	Part with iM16K
Density g/cc	0.9	0.86	0.83
Borealis Standard PP (Homopolymer H503)	4.54	4.16	3.36
Borealis Copolymer (CP284)	19.16	7.8	5.4

Industrial Business Group Homopolymer PP based TPOs Containing Talc Partial Replacement

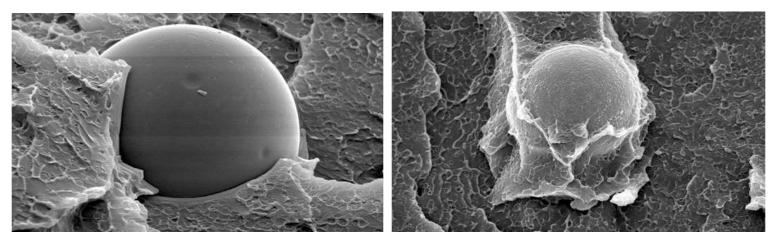
Component	Formula 1		Formula 2		Formula 3		Formula 4		
	PP-	PP-T20		PP-T10 GB4		PP-T10 GB4 -mapp		20-mapp	
	Wt%	Vol%	Wt%	Vol%	Wt%	Vol%	Wt%	Vol%	
PP homopolymer	80	92.5	86	88.6	83	85.5	77	65.84	
GB-iM16K			4	8	4	8	20	30.78	
Talc	20	7.5	10	3.4	10	3.4			
Mapp compatibilizer					3	3.1	4	3.38	
Final	100	100	100	100	100	100	100	100	
Density	(1.0	046	0.942		0.943		0.785		
Tensile Strength @ RT (MPa)	31	1.7	27.0		32.7		31.0		
Tensile Strength @ 90 °C (MPa)	12	2.5	11	.4	13.5		13.5		
Tensile Elongation (%)	1	0	40		12		6		
Tensile Modulus@ RT (MPa)	21	10	1900		1835		1830		
Tensile Modulus@ 90 °C (MPa)	27	70	20	265		250		300	
Flexural Strength (MPa)	4	9	45		50		49.2		
Flexural Modulus @1 % secant (MPa)	16	50	1620		1620		1740		
Izod impact Strength at RT (J/m) © 3M 2012. All Rights Reserved.	3	32	28		39		30.3		

Industrial Business Group High Impact Ductile TPOs Containing Talc Partial Replacement

Component	Formula 1		Form	nula 2	Formula 3	
	Wt%	Vol%	Wt%	Vol%	Wt%	Vol%
High Impact PP containing rubber	100	100	80	92.74	87.68	91.92
Talc			20	7.26	9.41	3.20
iM16K-GB					2.91	4.88
Final	100	100	100	100	100	100
Density	0.8	377	1.021		0.926	
Tensile Strength (Mpa)	17	7.2	18.8		16.8	
Flexural Strength (Mpa)	26	5.9	33.1		29.7	
Flexural Modulus (Mpa)	915		1585		1310	
Izod impact Strength at RT (J/m)	72	25	64	45	430	

PP Containing Glass Fibers

Component	Form	iula 1	Formula 2		
	-	ection Molding htrol	Standard Injection Molding PP/GF/GB		
	Wt%	Vol%	Wt%	Vol%	
HC- PP	78	91	68.2	70.14	
GF	22	9	19.2	7.12	
iM16K-GB			9.96	20.06	
Compatibilizer			2.64	2.68	
Final	100	100	100	100	
Density	1.()46	0.9)27	
Tensile Modulus (Mpa)	40	50	39	60	
Flexural Strength (Mpa)	1(00	94		
Flexural Modulus @1 % secant (Mpa)	26	06	3020		
Izod impact Strength at RT (J/m)	54	1.5	51.8		


Nylon 66 with 30wt.% Glass Fiber Comparison of Glass Bubble Containing Systems

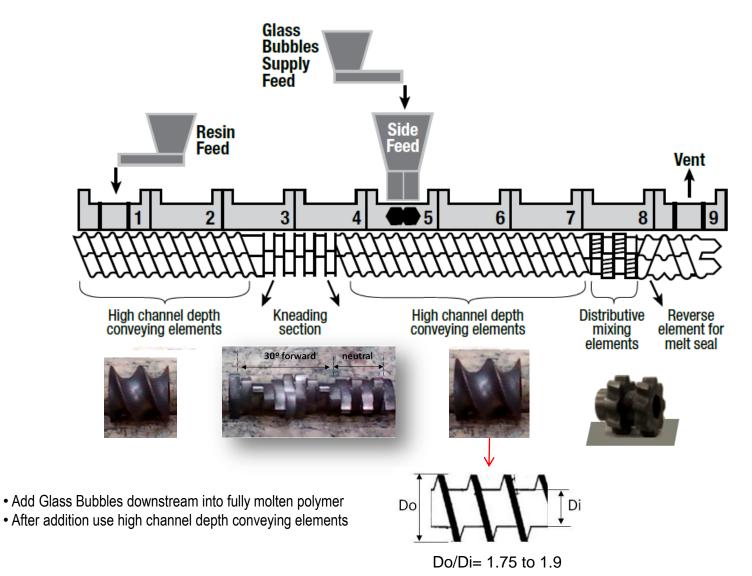
Component.	Formula 1		Formula 2		Formula 3	
	PA 6,6 Base Resin + 30w% Glass Fiber		PA 6,6 Base Resin + 30w% Glass Fiber + 5w% iM16K		PA 6,6 Base Resin 30w% Glass Fiber 10w% iM16K	
	Wt%	vol%	Wt%	vol%	Wt%	vol%
PA 6,6	70	83.9	65	71.4	60	60.8
Glass Fiber	30	16.1	30	14.7	30	13.6
iM30K-GB						
iM16K-GB			5	13.9	10	25.6
GB/GF VOL RATIO			0.94		1.9	
Final %	1	00	100	100	100	100
Vol.% Glass	16	6.1	28.6		39.2	
Density	1.	37	1.25		1.15	
Tensile Strength (MPa)	19	1.4	176.9		164.1	
Tensile Elong. (%)	6	.6	6.3		5.4	
Tensile Modulus (MPa)	4454		4434		4595	
Flexural Modulus (MPa)	74	70	7598		8044	
RT Izod impact Strength (kJ/m2)	8	.9	8.6		7.7	

Silane Treated GBs

FOR FURTHER COMPATIBILITY WITH VARIOUS RESINS, SILANE TREATED GLASS BUBBLES ARE AVAILABLE

Untreated Bubble

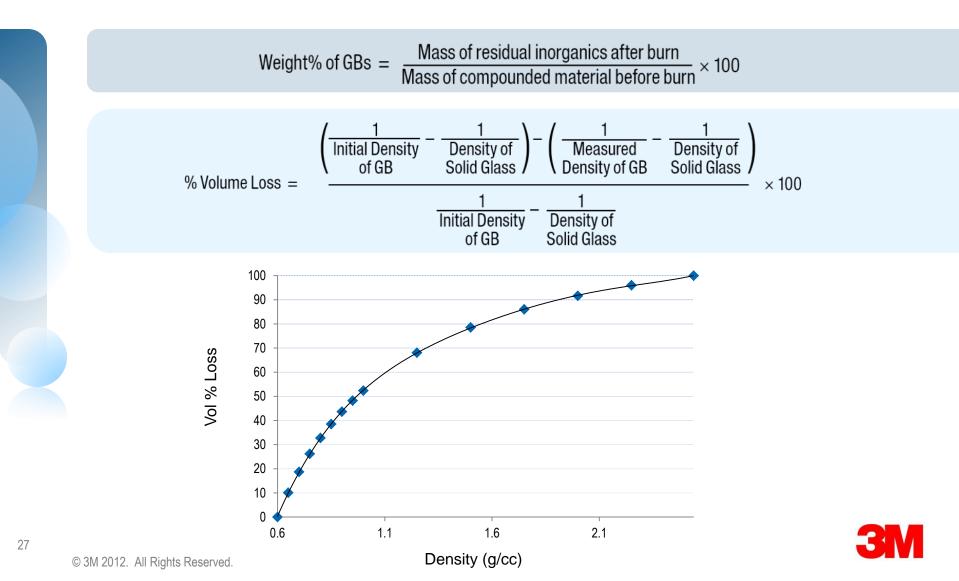
Treated Bubble


Industrial Business Group

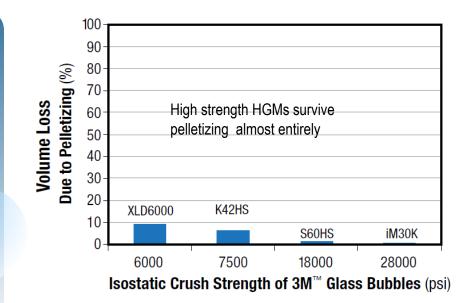
Polymer Processing with 3M[™] Glass Bubbles

© 3M 2012. All Rights Reserved.

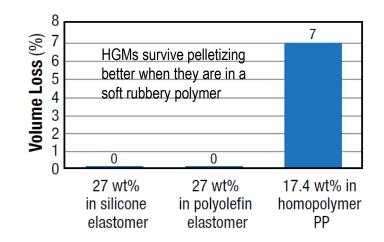
Incorporation of 3M[™] Glass Bubbles via Twin Screw Extrusion



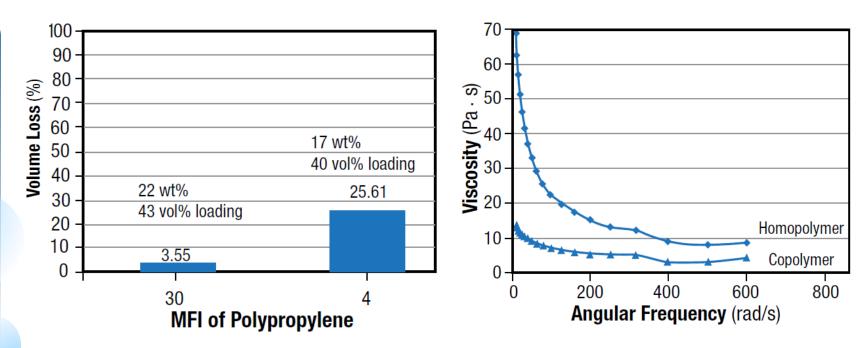
Determining Glass Bubble Concentration and Survival Rate



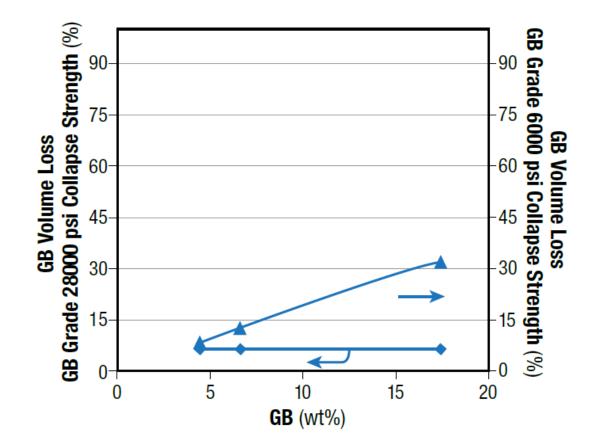
Parameters that are Influential in GB Survival During Compounding

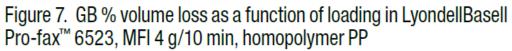

- Pelletizing
- Polymer Viscosity
- HGM Loading –Fill Ratio
- Back Pressure
- Channel Depth in the screw channels

Parameters that are influential in HGM Survival During Compounding -Effect of Pelletizing

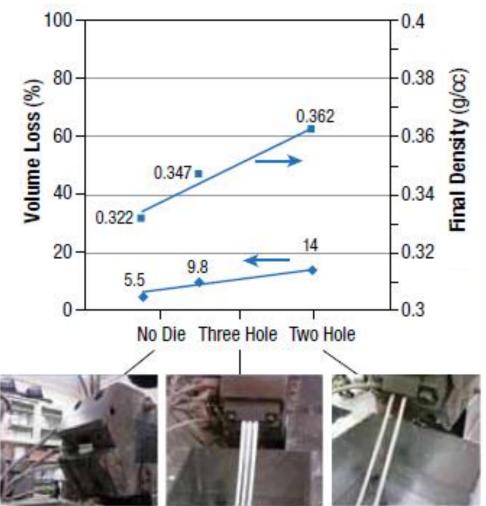

% HGM volume loss due to pelletizing as a function of isostatic crush strength - in homopolymer polypropylene with an MFI of 4 g/10 min at 230°C, 2.16 kg

% Glass bubble volume loss due to pelletizing as a function of resin system used. In elastomeric soft resins, glass bubble survival is higher during pelletizing (glass bubble with 6000 psi crush strength, 0.3 g/cc)

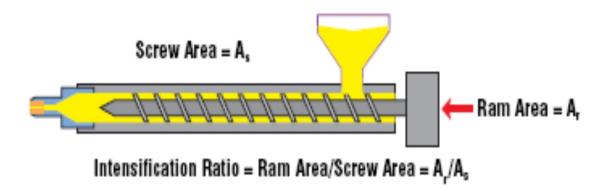

Parameters that are influential in HGM Survival During Compounding -Effect of Polymer Viscosity



HGM(6000 psi collapse strength) % volume loss in polypropylene as a function of melt flow index (MFI). LyondellBasell Pro-fax[™] 6523. MFI (230°C/2.16 kg): 4 g/10 min and LyondellBasell Profax[™] SG899 MFI (230°C/2.16 kg): 30 g/10 min.


Parameters that are influential in HGM Survival During Compounding- Effect of HGM Concentration

Parameters that are influential in HGM Survival During Compounding Effect of Back Pressure


Summary of Important Things to Consider During Compounding

- 1. Twin screw co-rotating intermeshing extruders
- 2. Add HGMs into an already molten polymer at a downstream port via a side or top feeder (side feeder is preferred).
- A side feeder should be fed via a supply feeder. This will ensure starve feeding of bubbles into the polymer melt and allow various volume % loadings to be prepared. If the bubbles are flood fed into the hopper of a side feeder, clogging and bridging may occur.
- 4. Inlet design of the side feeder into the extruder is very important, especially if high volume percentages of glass bubbles are formulated. The screw elements in the inlet section should be of the conveying type with a very high OD/ID ratio, such as 1.75 or more.

- 5. Pre-heating of glass bubbles, although not mandatory, could help prevent rapid temperature decrease of the polymer melt, which could cause rapid increase in viscosity.
- 6. After the glass bubbles are added into the molten polymer, they should be conveyed via standard conveying screw elements for a while before entering distributive block sections (if any need to be used).
- 7. Minimal back pressure is preferred during compounding with glass bubbles. In this respect, a die design that creates low back pressure is important. Likewise, screens with too large mesh sizes should be avoided.
- 8. An underwater pelletizer is the preferred method of pelletizing
- If possible, resin parameters should be considered to prevent breakage – lower viscosity, higher MFI resins are preferred as well as materials that are softer and more elastic.

Injection Molding Considerations

- Maintain Low Back pressure
- •Set low screw rotation speed (RPM) and injection rate
- Maintain injection pressure x intensification ratio < Isostatic Crush Strength</p>
- General-purpose injection screw

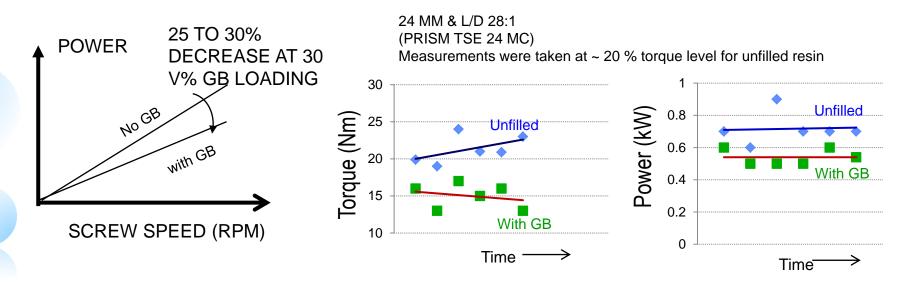
Industrial Business Group

Benefits of HOIOW Glass Microspheres

© 3M 2012. All Rights Reserved.

The Power to Do More

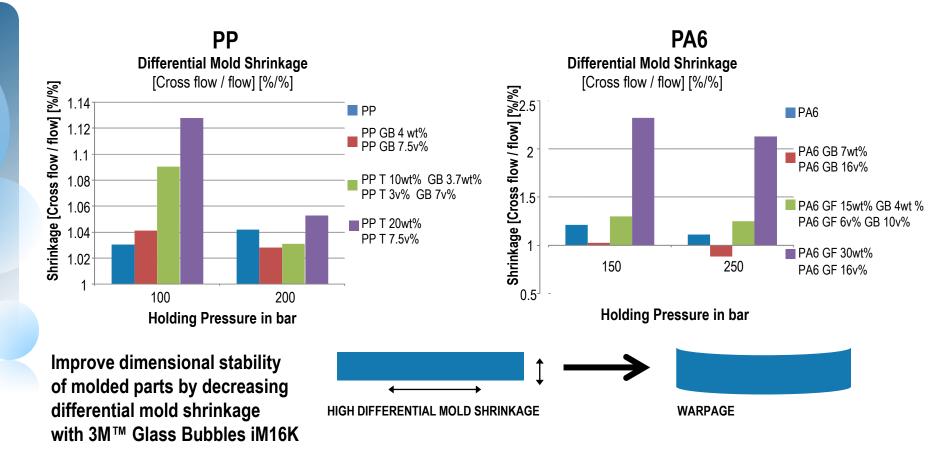
- Reduced density
- Increased flexural and tensile modulus
- Since they are isotropic with an aspect ratio of 1 (minimal surface area) and do not orient themselves or cause orientation to the polymer molecules, injection molded parts have uniform shrinkage leading to improved warpage and dimensional stability
- Since they take up resin volume and in some cases provide nucleation sites for crystalline polymers, increased productivity can be achieved for injection molded or thick extruded profiles due to fast cooling cycles.
- Decreased CLTEs, decreased thermal conductivity
- Increased bulk, compressive modulus, increased hardness and scratch resistance, increased HDT

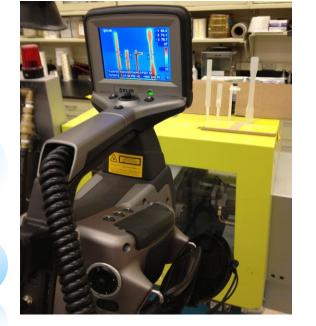


Reduced Power Requirement During Compounding

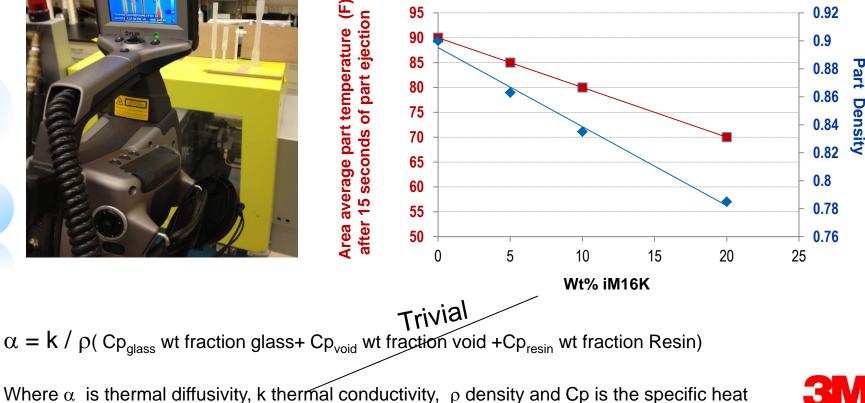
POWER = TORQUE X 2π SCREW SPEED (RPM)

Achieve higher volumetric throughput with glass bubbles or reduce torque and hence power requirements for a given volumetric throughput

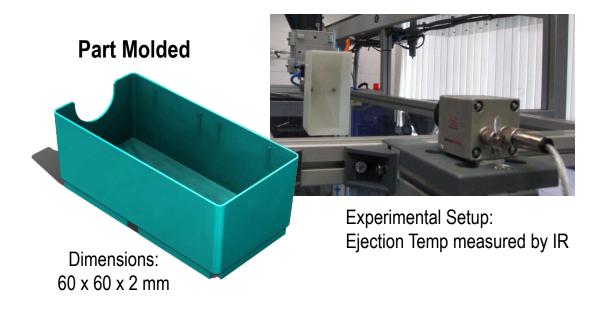

EXAMPLE : HOMOPOLYMER PP WITH AND WITHOUT GB AT 30 VOL%


Dimensional Stability in PP and PA6

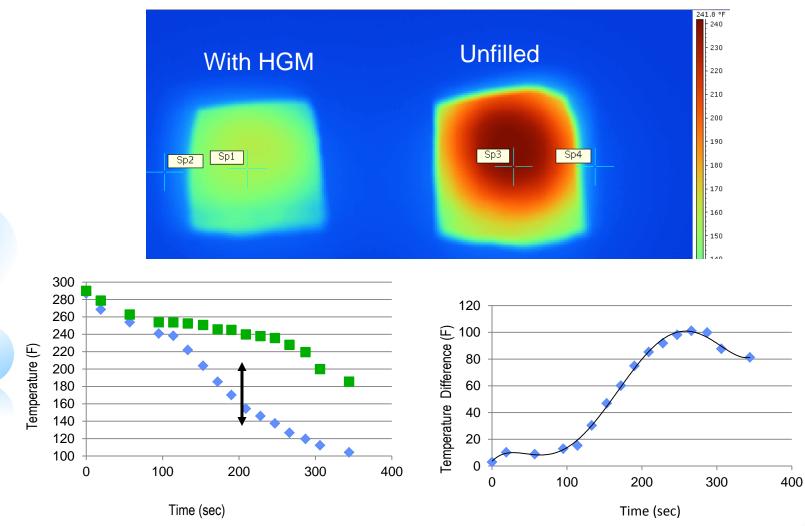
Independent Study by SKZ Institute, Germany According to DIN EN ISO 294-4


Effect of Glass Bubbles on Injection Molding Part Cooling Rate

© 3M 2012. All Rights Reserved.

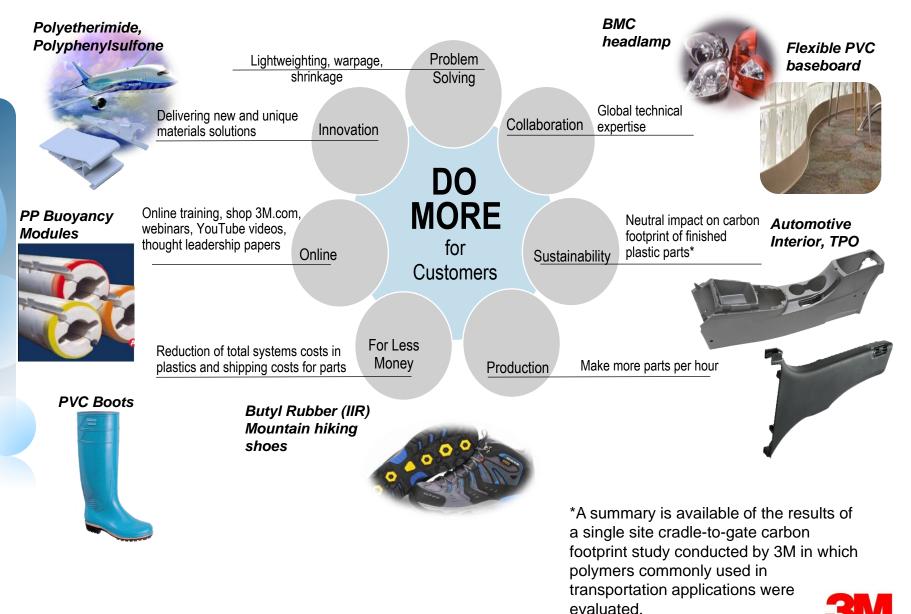

39

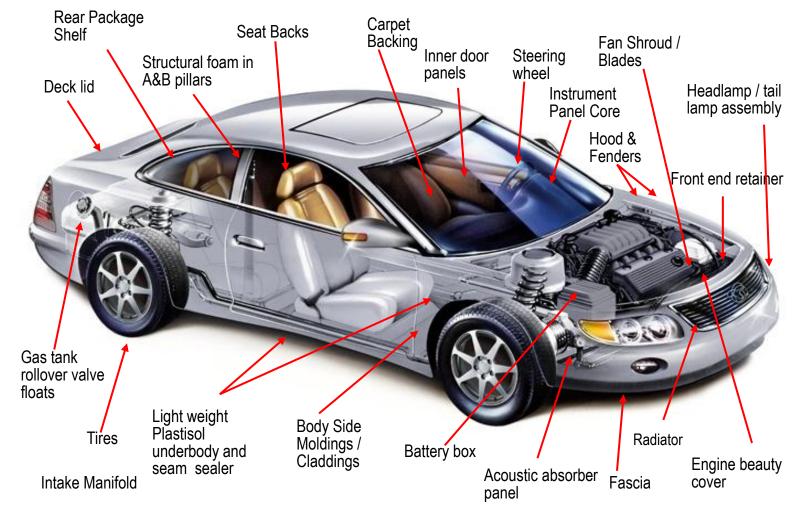
Injection mold temp: 135 F Holding Pressure: 3000 Psi Mold: ASTM Mold Base Polymer : PP Homopolymer


Independent Study by SKZ Institute, Germany

Material	Total Cycle Time t _G [s]	Cycle Time Reduction in [%]
PA6	40.2	_
PA6 GB-16 v%	35.2	12
PA6 GF 15–6 v% GB–10 v%	38.2	5

Effects of HGMs on Cooling from the Melt




Industrial Business Group

Application Examples

Industrial Business Group

Industrial Business Group Hollow Glass Microspheres - Current & Potential Automotive Applications

Examples of Commercial Glass Bubbles Applied Parts

HANIL E-HWA CO., LTD

Visteon

Visteon Interiors Korea Ltd.

Photos provided by Magna, Hyundai Engineering Plastics and Visteon with customer claims as portrayed at NPE 2012. Photo provided by Hanil e-Hwa with customer claims in 2010.

Injection Molded Parts

Materials used: Talc Filled PC/ABS Deck Lid

Enabling Features:

- Reduced weight
 - Control 5.5 lbs
- ■7.5 wt. % GBs 5.0 lbs
- Class A Paint-able Surface
- Same Process Conditions

Fuel Floats

Materials used:

Nylon 6,6

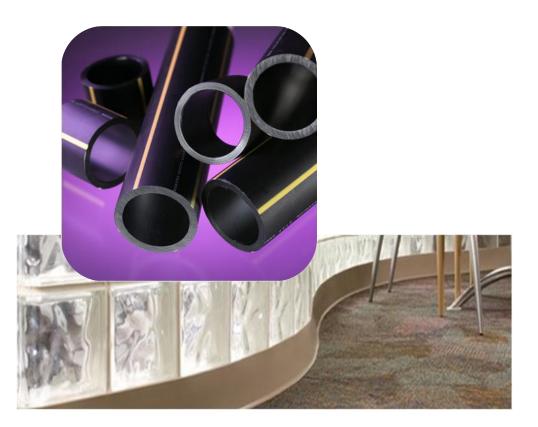
Enabling Features:

- Reduced weight
- 33 Wt. % S60HS
- Final density of 0.90 g/cc
- Allowed use of existing tooling
- Material specification

The following ASTM callout has been developed for GB1430-N :

ASTM D 4000 PA0120KD044PM018UM034YI095Z01Z02Z03Z04

Callout	ISO Method	Unit	Value
PA0120 (heat stabilized nylon 66			· ·
KD044 (tensile strength)	ISO 527	Mpa	44 min.
PM018 (Izod impact)	ISO 180	kJ/m2	1.8 min.
UM034 (flexural modulus)	ISO 178	Mpa	3400 min.
YI095 (HDT @ 1.8 Mpa. flat)	ISO 75	deg. C	95 min.
Z01= (filler hollow glass bubbles	3)		
Z02=(ash)	ISO 3451	%	33 +/- 4
Z03 = (density)	ISO 1183	g/cm3	.90 +/02
Z04= (viscosity)	ISO 307	%	1.45-1.85


Extruded Profiles

Materials Used:

PVC or Filled PVC

Enabling Features:

- Increased throughput due to lower density/reduced cooling time (10 – 15%)
- Reduced weight
- Reduced warpage
- Improved feeding
- Meets flammability requirements

5kg weight savings per aircraft
1000 liters fuel savings/year
Reduction in carbon emissions

Low-density polymer systems specifically for the aircraft industry have been developed using 3M[™] Glass Bubbles in high temperature high performance polymers such as Polyether imide (PEI) and polyphenylsulfone (PPSU).

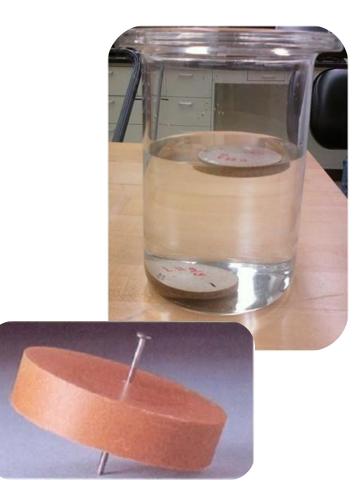
Photo provided by REHAU as portrayed at NPE 2012.

Photo provided by Kohshin Rubber Co., Ltd. as portrayed at NPE 2012.

Glass Bubbles in Shoe Soles

- FEATURE
 - KOLON SPORT ™ FEATHER
 - 3M[™] Performance Additives iM30K incorporated
 - Floats in the water
 - Work with research institute (KIFLT)
- BENEFIT
 - Less weight and comfort
 - Less fatigue

- ADVANTAGE
 - Weight reduced (20%)
 - − Control 1.18g/cc \rightarrow under 1.0g/cc at 11% iM30K
 - Improved dimensional stability
 - Water & chemical resistant

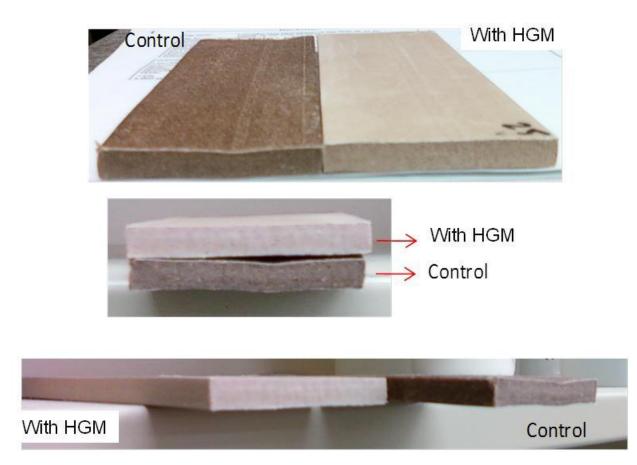

Polymer Wood Composites

Materials used:

Virgin and Recycled HDPE, PVC

Enabling Features:

- Reduced Weight (5 15%)
- Reduced Cooling Time
- Improved Nail-ability
- Reduced Flammability



Pressure at the wood-drill bit contact point by dividing the weight of the drill by the cross sectional area of the $\frac{1}{4}$ " drill bit. 1800 grams drill weight applies a pressure of ~80 psi at the contact point.

75 SECONDS VS 20 SECONDS WITH GLASS BUBBLES (18 wt% GB)

Improved Dimensional Stability

Reduced Differential Weighting

Materials used:

Polypropylene

Enabling Features:

- Reduced/differential weighting
- Improved buoyancy
- Even wear
- Improved material flowability in mold
- Allowed use of existing tooling

Pressure-resistant thermal insulation and buoyancy

Materials used:

PP, PU, Epoxy, Silicon

Enabling Features:

- Reduced weight
- Density change
- Thermal conductivity
- High loading of GBs

Glass Bubble	W/m K	Btu in/h ft2 F
K1	0.047	0.327
K15	0.055	0.38
K20	0.07	0.486
S22	0.076	0.529
K25	0.085	0.593
S32	0.108	0.746
S35	0.117	0.813
K37	0.124	0.858
S38/ S38HS/ S38XHS	0.127	0.88
K46	0.153	1.062
S60/ S60HS	0.2	1.39

© 3Ni ZU IZ. Ali Migilia Reserveu.

Conclusion

Hollow Glass Microspheres can reduce density of materials while providing significant processing benefits with improved properties.

Smart formulation is key in attaining an acceptable balance of weight and final properties.

Industrial Business Group

Thank you!

© 3M 2012. All Rights Reserved.

Warranty, Limited Remedy, and Disclaimer: Many factors beyond 3M's control and uniquely within user's knowledge and control can affect the use and performance of a 3M product in a particular application. User is solely responsible for evaluating the 3M product and determining whether it is fit for a particular purpose and suitable for user's method of application. Unless a different warranty is specifically stated in the applicable product literature or packaging insert, 3M warrants that each 3M product meets the applicable 3M product specification at the time 3M ships the product. 3M MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY IMPLIED WARRANTY OR CONDITION ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. If the 3M product does not conform to this warranty, then the sole and exclusive remedy is, at 3M's option, replacement of the 3M product or refund of the purchase price.

Limitation of Liability: Except where prohibited by law, 3M will not be liable for any loss or damages arising from the 3M product, whether direct, indirect, special, incidental or consequential, regardless of the legal theory asserted, including warranty, contract, negligence or strict liability.

Technical Information: Technical information, recommendations, and other statements contained in this document or provided by 3M personnel are based on tests or experience that 3M believes are reliable, but the accuracy or completeness of such information is not guaranteed. Such information is intended for persons with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information. No license under any 3M or third party intellectual property rights is granted or implied with this information.

3M is a trademark of 3M Company

